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SUMMARY

A general integral form of the boundary-layer equation which
includes the Reynolds normal-stress term was derived. From this general
form, two special equations - namely, the modified momentum equation and
the modiflied kinetic-energy equation - are obtained, These modified equa-~
tions include the effect of the Reynolds normal stress in the stream
direction.

The parameters for the dissipation of the mean-flow kinetic energy
by the shearing stress are suggested by the use of the Fediaevsky analysis
for the shearing stress across turbulent boundary layers and by the use of
a friction formulm that makes the surface shear depend on the shape of the
velocity profile, as well as on the Reynolds numbers. The parameters
obtained in this way are found to be the same as those previously assumed
by other investigators.

The parameters for the Reynolds normal stress are suggested by
assuming that a relation between the local fluctuating axial velocity and
the local mean velocity that is useful in wind tunnels can be used to
determine some of the parameters upon which the Reynolds normal stress
may depend. A test of these parameters by a limited amount of data shows
no better correletion than previously obtained by other investigators who
used only one of the three parameters obtained in this analysis. This
lack of correlation may be caused by incorrect parameters or insufficient
data.

INTRODUCTION

The importance of the problem of predicting the behavior of the tur-
bulent boundary layer in regions of adverse pressure gradients has led to
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a number of investigations during the past. Some of the more represen-
tative papers are those of Buri (ref. 1), Gruschwitz (ref. 2), whose

main effort was directed toward finding a single shape parameter agalnst
which the velocity profiles could be correlated, and Von Doenhoff and
Tetervin (ref. 3), who found that Gruschwitz's suggestion of & single-
parameter family of velocity profiles appeared to be essentially correct
and who developed an empirical equation for the prediction of the develop-
ment of the turbulent boundary layer. None of these investigations, how-
ever, considered the effect of the rate of increase in the stream direc-
tion of the Reynolds normal-stress term.

When the wall shear was computed from experimental measurements of
the boundary-leyer velocity profiles by using the Von Karmen momentum
equation (ref. 4), the wall shear stress was found to increase toward
separation. Wall-shear-stress measureménts made with a heat-transfer
instrument (ref. 5), however, indicasted that the wall shear stress
diminished toward separation. This seeming inconsistency of the wall
shear stress was clarified somewhat in a paper by Wallis (ref. 6), who
suggested that the usual procedure of neglecting the effect of the rate
of increase of the Reynolds normal-stress term would glve misleading
results in the computing of the behavior of turbulent boundary layers
near separation. Neglect of this effect would result in computed velues
giving too low a value of momentum-thlckness gradient near separation.

The first work toward checking the suggestion of reference 6 was
done by Bidwell (ref. T), who snalytically arrived at a modified momentum
equation which included the effect of all the Reynolds stress terms.
The data of Schubauer and Klebanoff (ref. 8) were used in evaluating the
additional effects, with the result that only the effect of the rate of
Increase of the Reynolds normal-stress term gave an important contribution.

Another work toward clarifying the problem was done by Rubert and
Persh (ref. 9). These investigators found from a number of measurements
of mean-flow terms that the values of momentum-thickness gradient near
separation computed from the Von Kdrmén momentum equation (ref. 10) did
not check with their experimental values. Realizing the limitations of
the Von Karman momentum equation, these investigators summed the mean-
flow terms and the wall shear stress and then subtracted this sum from
the experimentally measured momentum-thickness gradient. The residue
was assumed to be dvue entirely to the rate of increase in the stream
direction of the Reynolds normal-stress term. In eddition, they inves-
tigated the kinetic-energy expression of reference 11. The residue for
their modified expression, however, was found to be negligible.

The purpose of this paper is to provide a derivation of the general
integral form of the boundary equetion without neglecting the Reynolds
normal-stress term. Two special cases of this equation are glven explic-
itly. They are the momentum equation and the kinetic-energy equation.
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Both expressions include the Reynolds normal-stress term. The present
work also suggests parameters which influence the dissipation of the
mean-flow kinetic energy by the shearing stress and by the Reynolds
normal stress.

This paper, with modifications as to some details, was submitted to
the University of Virginia in the form of a thesis in partial fulfiliment
of the requirements of the degree of Master of Science of Aeronautilcal
Engineering.

SYMBOIS
5 dp
A Fedlaevsky parameter, ?;-E;
f velocity ratio, u/U
8 shear -stress ratio, T/To
H boundary-layer shepe parameter, &%/0
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K ratio of kinetic-energy thickness to momentum thickness,
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1 contraction ratio
1 5 1
M=—-1-f y (1 - ey
ettt Jo
m exponent of u in derivation of general integral equation

N=-i-f8yn(1-fm+l)fdy

1 0]
N =
dH

n exponent of y 1n derivetion of general integral equation

P mean pressure

q dynemic pressure outside boundary layer, -;—'-pU2

R6 boundary-layer Reynolds number based on boundary-layer
thickness, U/v

Rg boundary-layer Reynolds number based on momentum thick-
nesg, U6/v

r power-profile exponent

U mean velocity Just outside boundery layer

u mean velocity in boundary layer in x-direction

u' fluctuating velocity in x-direction

ut time average of u'’

v mean velocity in boundary layer in y-direction

v! fluctuating velocity in y-direction

V' time average of +v'

X distance along surface

y distance normal to surface
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s) boundary-layer thickness
5
&% boundary-layer displacement thickness, Jf (1 - £)ay
0
=3
=%
5]
0 boundary-layer momentum thickness, Jf (L - £)f dy
0
T gbsolute value of dynamic viscosity
v kinematic viscosity of air
¢ power-profile parameter, y/5
P mean density of air
T total shear stress
To wall shear stress
TR

5
= turbulent-normal-stress coefficient, -U% f gi-(u'u' Jdy
0

ANATYSTIS
Derivation of Modified Integral Momentum and Kinetic-Energy

BEquations by the Method of Tetervin and Idn

The analysis described in this section differs from the method of
Tetervin and Iin (ref. 12) in three aspects. First of all, the effect
of suction (or blowing) velocity is not considered; consequently, all
the v, terms in the analysis of Tetervin and Lin are omitted. Sec-

ond, this analysis is for two-dimensional flow only. Although the
momentum equation for two-dimensional flow is not the same as for flow
over & body of revolution, it can be shown that the kinetic-energy equa-
tion is the same. Third, and most important, this analysis includes the
effect of the rate of increase of the Reynolds normal stress in the
stream direction. As & result, the Von Kdrmdn momentum equation is
modified to include an additional stress term and the kinetic-energy
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equation is modified to include two Reynolds stress terms which differ
in sign.

If the Reynolds stress term (-pu'u') is included in the boundary-
layer equation for steady two-dimensional incompressible flow, this
equation becomes

—du —ou dp o du — d -
p<§ S;'+ v S;) ="a§'+ §;<F g; - pu'v > - S;(Pu u ) (1)

where é%(-pu'v') is the Reynolds shear-stress term and g&(pu'u')

is the term due to the increasing Reynolds normal stress. It is thus
seen that the effect of an axially increasing or decreasing Reynolds
normal stress is such as to produce an additional stress. The general
integral form of the boundary-layer equation of the analysis of refer-
ence 12, when modified as indicated in equation (1), becomes

(n + l)N%xg+ 9(%-n11>+%g1q(m+ 2) - n(J - M) - L{m + 1Z| -

o) o)
m —1— él‘_ - _a_ Tqq !
s+ 1) L, fo e X oy fo e 2 (g Day (2)

vhere T 1is the total shear stress.

The general integral equation (2) was derived by multiplying equa-

tion (1) by W2 and y" (where m and n are arbitrary integers)
and integrating from y = O to y = 5. This equation contains the
Von KArmén integral momentum and the integral kinetic-energy equations,
since these equations are derived from the boundary-layer equation by
teking appropriate values of m and n. The Von Kérmfn momentum equa-
tion is derived from the boundary-layer equation when it is integrated
with respect to y. Thus, for m = O and y = O, equation (2) should
reduce to the modified momentum equation.

For m =n = 0, equation (2) becomes

ae av o du 1 %o 1 My
+ = + — —(putut)dy  (3)
k/O aY pU2 0] ox
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since for n = 0O,

Also, for m=n = 0,

and
o]
L9=f (f + 1)dy
0]
Thus, it follows that
N=1
L= -H
and equation (3) becomes
Egﬁgd—U(H+2)=l+—l—faiW)dy (&)
dx U ax pUe U2 0 ox

which is the modified Von Kdrmén momentum equation. Comparison of equa-
tion (4) with the well-known Von Kdrmén momentum equation indicates that
the term

1 3,
_UEJ; 2@y (5)

is the contribution due to the rate of increase of the Reynolds normal
stress 1n the stream direction.
If the value of d6/dx of equation (4) is substituted into equa-

tion (3), and the further approximation is made that the velocity pro-
files form a single-parameter family of curves f = f(1,H) where

‘n:

H =

@ IO; @j<




8 NACA TN 3049

equation (3) becomes, after lengthy manipulationm,

e%(%+ nI)=%gEn(J-M)(H+ 1) + L{m + l)+N(H—mZI +

b )
To |n(7 - W - m Og
> (F-M) - N (m+l)j; nen S ay| -

0]

Ela-{Ea(J w0 -n] [ 2

e}
(m+ 1) fo P %(W)w (6)

The kinetic-energy equation is obtained by letting m = 1 and
n=0. For n =0, the integrals I, J, and M have finite integrands.
When m=1 and n=0, L=0 and

5
N=lf (1 - 2ay = x
Y0

Then

= (1)

which is the modified kinetic-energy equation.
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Equation (7) shows that the contribution of the rate of increase of
the Reynolds normal stress in the streamwlse direction results in two
terms which differ in sign.

In reference 9, power profiles were assumed in the kinetic-energy
equation without obteining any residue term. Equation (7) was then
introduced in appendix C of reference 9 and power profiles were again
assumed but, for the data available, no pertinent values for the sum of
the last two terms of equation (7) were obtained.

Determination of the Streamwise Variation
of the u' Fluctuation

The integrals

[° 2w
o X

and

JFS £ jl(u'u')dy
0 ox

are contained in the modified momentum and kinetic-energy equations.

If it were possible to predict exactly the manner in which u' wvariles
with x, the above integrals could be obtained either by numerical or
graphical integration. Since no exact expression exists, the integrals
mist be evaluated by approximate methods. One such method involves the
determination of the parameters upon which u' depends. This method
requires some sultable approximation of the relation between u' and x.
The work of G. I. Taylor (ref. 13) suggests such a relationship.

If the mean flow in a converging entry is assumed to be irrota-
tional, the disturbance or fluctuation can be regarded as due to vor-
ticity. The effect of the contraction is to elongate filaments of par-
ticles lying in the direction of the mean flow and to contract filaments
lying perpendicular to the mean flow. It is shown in detail in refer-
ence 13 that, if the vortices are very much elongated in the direction
of the stream, the contraction of the disturbances is in inverse propor-
tion to the contraction of the mean flow. For a different arrangement
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or elongation of these vortices the proportionality constant varies from
1.0 to 0.5. Thus, if the mean flow increases from U to 1u, the fluc-
tuation decreases from u' to u'/1 or u'/21, depending on the vor-
tices predominant in the flow. This concept gives fair results for the
relation between u' and U for the flow in a contracting channel like
the entrance cone of a wind tunnel.

It is realized that this concept pertains to a flow where the
effects of viscous and turbulence stresses are small. In the present
work a relation that can be used in a boundary layer is needed. A test
of Taylor's concept was made from the data of reference 8. The rela-
tion is

(8)

5
g
F

el

or, in nondimensional form,

v ()6

where the subscript r denotes reference quantities which are constant
for any particular streamline. The procedure for calculating the axially
fluctuating terms consists in determining the quantities for a reference
station. Equation (8) is then used to calculate u' along a streamline
for various values of x, when U is known as a function of x.

(8a)

cila

The results obtained by using equation (8a), where the reference
quantities were evaluated only at x = 17.5 feet, are given in table I
and shown plotted in figure 1. The results indicate that equation (8&),
insofar as the flow in a boundary layer is concerned, is considerably
affected by the viscous and turbulence stresses, which are large in this
cagse. In figure 2, for which the calculations are given in table II,
two computed curves are shown for the station at x = 22.5 feet. The
17.5-foot station was used as the reference to evaluate the lower curve
and the 20.0-foot station was used as the reference to evaluate the
upper curve. Table IT and figure 2 Indicate that the results are in
falr agreement when the reference station is taken Just ahead of the
station for which the computations are made. These results indicate
that the Taylor relation may be sufficiently accurate to suggest param-
eters upon which the terms involving the effect of the rate of increase
of the Reynolds normel stress depend.
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Determination of the Parameters for the Term

o)
3 [° 2

The purpose of this section 1s to determine parameters upon which
the term (eq. (5)) involving the effect of the rate of increase of the
Reynolds normel stress may depend. The results, of course, are not
based on a rigorous analysis since, as indicated in reference 13, the
exact vortex patterns and the effects of viscosity and diffusion cannot
be determined.

If the Taylor relationship is assumed to be sufficiently accurate
to apply to the flow in a boundary layer, equation (8) may be squared
to obtain

—

u'@ = ur'eﬁr2 35 (9)
a

Since u'2 at the outer edge of the boundary layer is assumed to
be zero, the expression for equation (5) is
5 —
J[‘ u‘2dy
0

1 [® O j——rv4. _ 1 4
2, s;(“’dy-?az(

or, upon use of equation (9),

5] 5]
1 O (MTyaw o L 4 2—-21

Tet & = %’- s0 that the term on the right becomes

[
14 2-2 1
—. —(5 u.! =4
¢x< 0 T ;12 ;>

or
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If the assumption is made that — = f;(H,¢) and © 1s introduced

into both the numerator and denominator, equation (10) becomes

E |

S}
5 S =

- [
__uT_d_f_Qfl £ (8, &)ag
uJg U ax|g2 8 Jg

1 2
=

Upon differentation, this equation becomes

é[j = (u'u')dy = I:(H)e =, f(H) -r@@) 2 :ﬂ (11)

where

i
aov
s

ale(m)]
dH

g(H) =

It should be noted that the parameters of equation (11) which,

although not complete, control the term 112 f —(u™u")dy also apply

ol aat
to the term f &( )Jdy since

As was stated previously, the results are not based on a rigorous
analysis and the list of parasmeters obtained may not be considered complete.
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Determination of the Parameters for the
Dissipation Coefficient

The purpose of this section is to suggest parameters of the
dissipation-coefficient term which appears in equation (7), which is

o)
Tof ag
— g
2qJ g Sydy
or

s}
To or
— g dy
2q 0

This integral is made dimensionless by dividing y by 8 to obtain

1
To of
_° a3
) e5

If the shear distribution across the boundary layer were known, the
ebove integral could be solved either numerically or graphically. The
work of Fedisevsky (ref. 14), who evaluated the shear distribution in
terms of a power series in £ based on the parameter Ay where

_.Lldgs gp (12)

suggests a possible approximate shear distribution. The Fediaevsky ana-
lysis 1s known to provide only an approximation to the shearing-stress
distribution across the boundery layer. It thus follows that the list
of parameters obtained from equation (12) is not complete.

A relationship was derived in an anelysis made by C. duP. Donaldson
at the Langley Iaboratory in 1952 as follows:

2

-~ s

r+l
To = A(H)gRg
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Thus, equation (12) becomes

2
h oo 1da,. ol T3
2q dx  gA(E) ©
or
2
Al=-9§E§_l_.(.[E)N1
qdx 6 A(H)\v

The factor (9/9)2/(r+l) is introduced into equation (12) to give

+3 2
by =8 SRR
1 a dx\e v A(H)

Since /6 is some function of H,

2_
Ay = Ay % %, Rg"TT, B(H)
Thus
g = g[’g’ %} Rg> C(®), i—l
and since of = f(H,¢t),
ot
5
To [° %, _ e
2_qj; f-a;dy—hlzl 2, Ry, D(H] (13)

where the right-hand side of equation (13) contains the approximate list
of controlling parameters for the dissipation coefficient.
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RESULTS

The consideration of the rate of increase of the Reynolds normal
stress In the stream direction led to the derivation of the modified
momentum equation (eq. 4):

5
a6 6 au To 1f d ——

—t+t ——(H+ 2) = —|)— + —/—/ u'u! )d
=T ) o2 T el My

and the modified kinetic-energy equation (eq. T):

Equation (4) differs from the Von Kirmdn momentum equation by the

3 [ 2wy

which is the additional stress due to the inclusion of the Reynolds normal
stress. Values of this term computed from the data of reference 8 are
plotted in figure 3. The magnitude of this term is shown to increase
sharply as separation is approached. The data in figure 3 have also been
presented in references 7 and 9.

term

Values of d6/dx computed from equation (&) by use of the experi-
mental values of 6 and H from reference 8 and the skin-friction formula
of refeyence 5 are plotted in figure 4. For comparison, values from the
Von Kermsn equation are shown. It is seen that equation (4) agrees better
with the faired data of reference 8. The data of figure 4 were also pre-
viously presented in reference O.
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Equation (7) differs from the kinetic-energy equation of refer-
ence (11) by the expression

5} s}
._a_u' ! - _a_u' !
1 KL/; ax( " )iy 2L/; £ ax( " )dy
...I_J_e_

Kl

where K 1is the ratio of the kinetic-energy thickness to momentum thick-
ness. The curves and data for figures 5 and 6 are the same as those in
reference 9 (figs. 24(a) and 24(b)), which were obtained by using equa-
tion (7) with power profiles being assumed. The effect of the Reynolds
normal stress 1s seen to be negligible.

On the assumption that the streamwise fluctuations vary according
to equation (8), it was found that the term

o)

1 Q /——
= —(u'u')dy
U2 o ox
dH © dq
was controlled approximately by the mean-flow parameters 8 =’ a Y

and H (eq. (11)). It can be shown that %% depends upon these same
parameters if the skin friction depends on Reynolds number and the
gshape factor H. In figure T, which is taken from figure 8 of refer-
ence 9, the term

TR 1 JFS d ——
Ea —.55 o S;(u u')dy

is plotted against 0O gg- and the scatter is rather large. This result

may be due to failure to include the other parameters suggested herein.
When an attempt was made to correlate the data of figure 7 by using the

parameters H and %-%% as well as © %%, no correlation was obtailned.

It should be noted, however, that the values of 6 %g and 8 da are

q dx
obtained by taking slopes from curves faired through experimentel points
and are, therefore, subject to some uncertainty. Moreover, it should be
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.
noted that 2—3 is obtained from
q

T T
2q  ax U dx U2

.
(H+ 2) is negative, and —9§ is positive.

where a8 is positive,

clo
&le

T
Thus EB is the difference between two quantities, each of which is much
q
T
larger than EB and each of which involves slopes of experimental curves.
q
The lack of correlation can thus be caused by the difficulty in obtaining

accurate values of 6 %%, of % %%, and especially of IR on the other
a

hand, the lack of correlation can ‘also be caused by the incorrect choice

of parameters. More data are necessary to determine more definitely the

reason for the inability to correlate the data of figure T by the sug-

gested parameters.

The shear-work term of equation (7) or

8

5
To [ p gy - T
2aJo oy 2q

was found to depend on the parameters ‘% %%, Rg, and D(H). This
dependency agrees with the results shown in figure 8, which is taken from
reference 9, figure 6.

The results as given herein indicate the need for more experimental
measurements of turbulent axial fluctuating velocities in turbulent
boundary leyers. If sufficient data were aveilable, it could be deter-
mined more definitely whether the Reynolds stress terms depend upon the
suggested parameters. In addition, the two additionael terms of the
modified kinetic-energy equation could be evaluated so as to determine
whether their net effect is still negligible for a large range of
conditions.
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CONCIUDING REMARKS

A general integrel form of the boundary-layer equation which
included the Reynolds normal-stiress term was derived. From this general
integral form, two special equations were obtained. They were the modi-
fied momentum equation and the modified kinetic-energy equation. Both
expressions included the effect of the Reynolds normal stress in the
stream direction.

The parameters for the dissipation of the mean-flow kinetic energy
by the shearing stress were suggested by the use of the Fediaevsky ana-
lysis for the sheering stress across turbulent boundary layers and by
the use of a friction formula that mekes the surface shear depend on the
shape of the velocity profile as well as on the Reynolds numbers. The
parameters obtained in this way were found to be the same as those pre-
viously assumed by other investigators.

The parameters for the Reynolds normel stress were suggested by
assuming that a relation between the local fluctuating axial velocity
and the local mean velocity that is useful in wind tunnels can be used
to obtain some of the parameters upon which the Reynolds normel stress
may depend. A test of these parameters by a limited amount of data
showed no better correlation than previously obtained by other investi-
gators who used only one of the three parameters obtained in this anal-
ysis. This result may be caused by incorrect parameters or insuffi-
cient data.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Iangley Field, Va., August 25, 1953.
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CAICULATED TURBULENCE INTENSITIES FOR REFERENCE

TABIE I

STATION x = 17.5 FEET

u'/u u'/U
o |y |y, /
in. Paired in. Experimental in. Experimental
(faired) {faired) Camputed (faired)
x = 17.5 £t ft X = 25.4 ft
0 | eeeaa- o e L e
.10 0. 0926 .180 0.109 . 0.108
.20 . 0875 V375 115 . 105
.30 . 0827 .550 L1117 . L115
A0 .0783 .725 L1156 .85 120
.50 . O7h5 875 .115 2.125 1294
.5 L0670 1,275 .105 2.775 .129
1.00 . 0596 1.650 .100 3.370 .126
1.50 o457 2.340 . 080 4.310. .115
2.00 . 0280 3,020 .58 5,200 » OGh
2.50 . 0088 3,675 . O3k 6.025 . 069
2.70 . 0062 3.925 . 025 6,325 . 060
3,25 | emeee- 5,000 | mmmme [ ameee 8,150 | ----- |  ---—-

6H0¢ ML VOVN

1



TABLE IT

CAICULATED TURBULENCE INTENSITIES FROM REFERENCE STATIONS x = 17.5 FEET AND 20.0 FEET

. u'fu u'/u
y:, 'F?mn&"'r{\gn'hn'l }.F’ — . R b'f, - . -
in. EERET Ee—T in. riments.l 1. Derlnentca .l
(faired) Jﬁxlggaired) Computed Ex?faired) Computed
x = 17.5 £t X = 20.0 ft x = 22.5 ft

0 | @ eemem- 0 | meeem= | mmema- 0 |  mmmmem | mmmee-
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Filgure 1.- Turbulence intensitles from data of table I.

610¢ ML VOvN

¢2



.08

Faired experimental data (ref. 8)
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Figure 2.- Turbulence intensities from date of table ITI.
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Figure 3.- Streamwise variation of turbulent fluctuation.
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Figure 4.- Streemwise variation of terms in the momentum and modified
momentum equations.
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Figure 5.- Btreamwlse variation of shape-factor gradient.
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Figure 6.~ Streemwise variation of shape fector.

660¢ NI VOVH



005

004

P

o
(=
Ol

)

0025 S
< O
A /L/’1"
001 L™ O
5 O o
@]
as? ®
ot 002 004 006 008 010 GIE 014 016
g 48 Naca
dx

Figure 7.- Correlation of turbulent-normal-stress coefficient as a
(Test

function of the nondimensionsl shape-factor gradient.
points are identified in fig. 8 of ref. 9.)
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